STATBEAN Name: NonlinearRegression
Purpose: For nonlinear regression calculation. This STATBEAN functions with Statgraphics for nonlinear regression software to describe the relationship between Y and one or more numeric predictor variables.
Name | Type | Description | Possible Values | Default Value |
initialCoefficient | double[numberOfCoefficients] | The initial estimates of the unknown coefficients. | Any. | null |
initialMarquardtParameter | double | The initial value of the Marquardt scaling parameter. | >0.0 | 0.01 |
maximumFunctionCalls | int | The maximum number of points at which the sum of squares function will be evaluated. | 1+ | 2000 |
maximumIterations | int | The maximum number of iterations to be performed. | 1+ | 200 |
maximumMarquardtParameter | double | The maximum value of the Marquardt scaling parameter. | >0.0 | 120.0 |
numberOfCoefficients | int | Number of unknown coefficients in the model. | 1+ | 0 |
scalingFactor | double | The multiple by which to multiply or divide the Marquardt scaling parameter. | >0.0 | 20.0 |
stopCriterion1 | double | If successive residual sums of squares differ by less than this proportion, convergence is assumed. | >0.0 | 0.00001 |
stopCriterion2 | double | If all successive coefficient estimates differ by less than this proportion, convergence is assumed. | >0.0 | 0.0001 |
tablewiseExclusion | boolean | Whether all rows of the data table containing a missing value in any column should be excluded from the calculations. | true,false | false |
tolerance | double | Conditioning tolerance for aborting matrix inversion. | >0 and <=0.000001 | 0.0000000001 |
userModelPrediction | STATBEANS.ModelPrediction | A routine to return predicted values for given parameter estimates (see sample below). | A valid instance. | null |
weightVariableName | String | The name of the column (optional) with weights to be applied to the residuals. | Any string. | "" |
xVariableNames | String[] | The names of the column with data values to be used for the independent (X) variables. | Any string. | "" |
yVariableName | String | The name of the column with data values to be used for the dependent (Y) variable. | Any string. | "Y" |
Name | Description | Arguments | Return Value |
double getAdjustedRSquared() | Returns the adjusted coefficient of determination. | None. | Adjusted R-squared, or missingValueCode if model cannot be fit. |
void getCoefficientPValues(double[numberOfCoefficients]) | Returns the P-values for the estimated coefficients. | Double output array. | None. |
void getCoefficients(double[numberOfCoefficients]) | Returns the estimated coefficients. | Double output array. | None. |
void getCooksDistance(double c[n]) | Returns Cook's distance corresponding to each row in the datasource. | Double output array. | None. |
void getDegreesOfFreedom(int df[3]) | Returns the degrees of freedom corresponding to the sums of squares. | Double output array. | None. |
void getDFFITS(double d[n]) | Returns the DFFITS statistic corresponding to each row in the datasource. | Double output array. | None. |
double getDurbinWatson() | Returns the Durbin-Watson statistic. | None. | DW, or missingValueCode if model cannot be fit. |
void getLeverages(double h[n]) | Returns the leverage corresponding to each row in the datasource. | Double output array. | None. |
double getLowerConfidenceLimit(double x[],double conflevel) | Returns the lower confidence limit for the mean value of Y. | Values of X at which to make prediction, and the percentage confidence. | Lower limit. |
double getLowerPredictionLimit(double x[],double meansize,double conflevel) | Returns the lower prediction limit for a new value of Y. | Values of X at which to make prediction,number of observations at X, and the percentage confidence. | Lower limit. |
void getMahalanobisDistance(double c[n]) | Returns the Mahalanobis distance corresponding to each row in the datasource. | Double output array. | None. |
double getMeanAbsoluteError() | Returns the residual mean absolute error. | None. | MAE, or missingValueCode if model cannot be fit. |
double getMeanSquaredError() | Returns the residual mean squared error. | None. | MSE, or missingValueCode if model cannot be fit. |
double getModelPValue() | Returns the P-value for the fitted model. | None. | P-value. |
int getNumberOfIterations() | Returns the number of main iterations. | None. | Count. |
int getNumberOfFunctionCalls() | Returns the number of times the residual sum of squares was computed. | None. | Count. |
void getPredictedValues(double p[n]) | Returns the predicted value of Y corresponding to each row in the datasource. | Double output array. | None. |
double getPrediction(double x[]) | Returns the predicted value of Y. | Value of X's at which to make prediction. | Predicted value. |
double getResidualDegreesOfFreedom() | Returns the d.f. for the error term used to estimate the standard errors. | None. | Residual df, or 0 if model cannot be fit. |
void getResiduals(double r[n]) | Returns the residual corresponding to each row in the datasource. | Double output array. | Residual or missingValueCode. |
double getResidualStandardError() | Returns the estimated standard deviation of the residuals. | None. | Standard error of the estimate, or missingValueCode if model cannot be fit. |
double getRSquared() | Returns the coefficient of determination. | None. | R-squared, or missingValueCode if model cannot be fit. |
double getSampleSize() | Returns the number of non-missing data values. | None. | Sample size. |
double getStandardErrorCoefficient(int k) | Returns the standard errors of the k-th coefficient. | Index. | Standard error. |
void getStandardErrors(double[numberOfCoefficients]) | Returns the coefficient standard errors. | Double output array. | None. |
int getSuccessCode() | Returns a code indicating why computation ceased. | None. | 0 for successful convergence, 1 if noninvertibility encountered, 4 if maximum value of Marquardt parameter exceeded, 7 if maximum iterations exceeded, 8 if maximum function calls exceeded. |
void getStudentizedResiduals(double s[n]) | Returns the studentized deleted residual corresponding to each row in the datasource. | Double output array. | None. |
void getSumsOfSquares(double ss[3]) | Returns the following sums of squares: total, model, residual. | Double output array. | None. |
double getUpperConfidenceLimit(double x[],double conflevel) | Returns the upper confidence limit for the mean value of Y. | Values of X at which to make prediction, and the percentage confidence. | Upper limit. |
double getUpperPredictionLimit(double x[],double meansize,double conflevel) | Returns the upper prediction limit for a new value of Y. | Values of X at which to make prediction, number of observations at X, and the percentage confidence. | Upper limit. |
Name | Description |
CooksD | Cook's distance corresponding to each row in the datasource. |
DFFITS | The DFFITS statistic corresponding to each row in the datasource. |
Leverage | The leverage corresponding to each row in the datasource. |
MahalanobisD | The Mahalanobis distance corresponding to each row in the datasource. |
Predicted | The predicted value of Y corresponding to each row in the datasource. |
Residual | The residual corresponding to each row in the datasource. |
SResidual | The studentized deleted residual corresponding to each row in the datasource. |
© 2025 Statgraphics Technologies, Inc.
The Plains, Virginia
CONTACT USHave you purchased Statgraphics Centurion or Sigma Express and need to download your copy?
CLICK HERE